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Learning Objectives

Define the key operating and thermophysical properties that
determine the mass flow rate and power consumption of a

compressors
Describe the method of Kriging
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Introduction

Various novel alternative lower-GWP
refrigerants are being investigated with the

goal of reducing environmental foot print of
HVAC&R systems

Evaluating the performance of a novel
working fluid requires significant modeling
and testing efforts

Compressor is a key component

Performance metrics of interest in system
design

— Mass flow rate

— Power consumption



ODbjectives

* Given compressor performance data for
two or more refrigerants

Predict the performance of a novel
lower-GWP alternative refrigerant in the
same compressor under similar
operating conditions




Existing Models

 Various physics
based models
are available for
compressor
performance
prediction

Description | Compressor Properties

Generic Compressor Model

General Inputs

Displacement 0.0000925
RFM 1000
Volumetric Efficency
Isentropic Effidency 0.65
Motor Effidency 0.9
HT Area of Inside Shell 0.125
HT Area of Qutside 0.153
Ambient Temperature 303.15
Motor Location
(@) Low Side (") High Side
Mdot Ratio to Shell o1

High Side Inputs

m3 Fraction of Inner Shell Area 0.2
Fraction of Outer Shell Area 0.2
HTC on Inner Shell 100.0
HTC on Quter Shell 40.0
Low Side Inputs
m]
HTC on Inner Shell 100.0
m]
HTC on Outer Shell 40.0
K

Additional Heat Transfer
[] Account for Partition Heat Transfer

Partition Thickness 0.0
Partition Surface Area 0.0

Partition Conductivity 17.0

Wim2zK w

Wim2K w

Wim2K w

Wim2K

[] Account for Shell Conduction (High to Low side)

Shell Thickness 0.0

Shell Quter Diameter 0.0

Shell Height

Shell Conductivity 16.0

OK

Cancel




Practical Challenges

* Detailed compressor geometry is seldom
available

* Need appropriate equations and tuning for
the different efficiencies

* Typical compressor performance data
Includes

— Power consumption and mass flow rates at
various operating conditions

— Te [F], Tc [F], Superheat [F], M [Ibm/hr], P [W],



Methodology

Source data for two or more refrigerants
— Refrigerant properties

— Operating parameters

— Measured performance

Develop a Bayesian interpolation model

For new refrigerants, given the properties
and operating parameters, predict the
performance

Validate the predictions against measured
data



Data Sets

* Source & verification data
— Published by manufacturer (10 coefficients)
— Publicly available data (AHRI AREP Report)

» Total of 3 data sets
— 2 Conventional refrigerants
— 1 Alternative lower GWP refrigerants

Set-1 Scroll R134a, R404A, R507A, R407A, R407F, R22
Set-2 Scroll R134a, R404A, R507A, R407A, R407C

Set-3 Scroll R410A, R32, DR5, L41a
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Model Parameters
nputs  |Outputs

Suction Pressure (Pe) Mass flow rate
Discharge Pressure (Pc) Power Consumption
Suction Temperature (T)

Specific heat ratios @ Suction (k)

Pressure Ratio (Pr)

Suction Density (rho)
[(k-1)/K]

Notes:

Compressor speed is constant

Suction superheat is constant (can change)

For 7 parameters, we need at least 37 data points

Goal: Find the best curve fit
Power = F ( Pe, Pc, Te, k, Pr, rho, ...)
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Kriging

* Interpolation method from geostatistics
y=f(x1,..., Xm):Y:ll'i'Z(Xl,..., Xm)

Observed points Un-observed points W constant mean, F (X)

\ | / | Z : random process with zero mean
| and Covariance
| Covariance = 6? R
R = Correlation function based on the
distance in x space

R(X,) = exp(—ZH, | Xoi = Xy le)

Kriging predicted
performance

-

Y (X0) = F (X) + G (X — X0)



Traditional vs. Kriging

Traditional Methods

Need functional form

Least squares
estimate (easy)

Don’t need source
data for evaluation

Cannot reproduce
source data

Error bounds are
constant

Kriging

No functional form

Maximum Likelihood
estimate (difficult)

Needs source data for
evaluation

Reproduce source
data exactly

Error bounds depend
on location in space



Kriging (contd.)

» Extremely flexible, does not require
functional form

* Shown to work well with highly nonlinear
functions

» Suitable for problems with less than 50
iInputs
 Complex implementations

Kriging Resources:
DACE Toolbox: http://www.imm.dtu.dk/~hbni/dace/
Dakota Framework: http://dakota.sandia.gov/publications.html




Error Metrics

* Avg. Absolute Percent Error (AAPE)
* Maximum Absolute Percent Error (MAPE)

* Model Acceptability Score (MAS)
— MAS10: % of points predicted within 10%
— MASO05: % of points predicted within 5%
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Data Set-1: Results

Mass Flow Rate

20

15

Count

U

-10 -3 0 <]

Relative Errors [%]

R134a, R407A, R507A = R404A

10

U

Power

-2

U 2
Relative Errors [%]
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Te[°F]

Data Set-1: Results

Mass Flow Rate Error [%]
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L41a
DR5
R32

R410A

L41a
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R410A

Data Set-2

* 60 points for each refrigerant
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Count

Results
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Prediction Errors

Errors in Predicted Mass Flow Rate ;3
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Results Summary
| Detset | sevit | sewiz | sewi3 | seat ] sed

Source R134a3, R1343a,R404A, R134a3, R134a, R404a, R410A,R32
R407A, R407C R404A, R407C R22
R507A
Candidate R404A R507A R407A R507A DR5,L41a
Mass flow, MAS10 100 89 100 95
Mass flow, MASO5 92.1 76 60 73
Mass flow AAPE 3.08 5.9 5.2 4.4
Mass flow, MAPE 7.25 20.87 8.8 10.6

Power, MAS10

Power, MASO5

Power, AAPE 1.53 1.71 3.6 2.5

Power, MAPE 2.88 3.2 5.6 4.4




Usage Notes

« Appropriate selection of Kriging parameters is
crucial

— Gaussian correlation
— First order polynomial mean

* Kriging is computationally expensive, especially
for use in system simulation

 Remedy

— Use Kriging to predict the performance for ~50 points
In the operating envelope

— Points can be chosen randomly or through sampling

— Develop polynomials (AHRI-540 standard) for mass
flow rate and power consumption

— Use polynomials in system simulation



Conclusions

Demonstrated the application of Kriging for
prediction of compressor performance of
alternative refrigerants for drop-in applications

Preliminary results are encouraging

Predictions were validated against measured data;
for the best case:

— Maximum error in mass flow rate was 1%

— Maximum error in power consumption was 3%

Can help reduce the testing burden during

evaluation of alternative refrigerants, especially
when coupled with design of experiments

Kriging is a powerful technique and has wide-
spread applications in HVAC&R
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