

Leveraging loss analysis to explore novel attributes and critical features for maximum efficiency in spool compressors

Craig R. Bradshaw, Ph.D.

Assistant Professor Oklahoma State University ASHRAE Member

Seminar 19: What's Loss Got to Do with It? Analysis of Indicator Diagrams of Positive Displacement Compressors

Learning Objectives

- Describe the data collection and reduction process for producing positive displacement compressor indicator diagrams
- 2. Describe the process for estimating compressor losses from indicator diagrams
- Define the relationship between indicated power and compressor mechanical efficiency and explain how to estimate possible efficiency improvements using indicator diagrams
- 4. Illustrate the impact of operating conditions on internal compressor losses

Acknowledgements

- □ Joe Orosz, Torad Engineering
- □ Greg Kemp, Torad Engineering
- □ Eckhard Groll, Purdue University

Overview

- □ What is unique about the spool compressor?
- □ Holistic loss pareto of 5th gen. spool compressor
 - » Experimental methodology
 - » Loss analysis
 - » Loss pareto
- □ Indicated losses of 7th gen. spool compressor
 - » Updated methodology
 - » Loss analysis at multiple operating conditions
- Conclusions

What is unique about the spool compressor?

What are indicated losses?

$$\eta_{o,is} = \frac{\dot{W}_{is}}{\dot{W}_{total}} = \frac{\dot{W}_{is}}{\dot{W}_{is} + L_{total}}$$

The isentropic efficiency includes all compressor losses

$$L_{total} = L_{ind} + L_{mech}$$

Indicated losses - "flow" losses or "internal" losses
 Frictional/mechanical losses - mostly independent

Experimental Methods – 5th Gen. Spool Prototype¹

- Instrumented using
 Endevco 8530B-500
 high-speed pressure
 sensors
 - » Sampled at 30,000 samples per second
 - » Roughly 20 cycles averaged per cycle
 - » 95% confidence interval presented as uncertainty

¹Bradshaw et al. (2016). Development of a Loss Pareto for a Rotating Spool Compressor...*App.Thm. Engr.* 99, 392-401.

Experimental Methods - Placement

Sensor Locations and Orientation

Correlating Volume Curves to Pressure Data

- □ Vane position is inferred from pressure data
- An algorithm to filter, determine inflection point, and assign vane position is developed

Average Multiple Samples of Data

Align volumes

Model² volumes \rightarrow Final aligned volumes

Collect volumes using model, stack two sets next to each other and shift to align with encoder position on compressor

²Bradshaw and Groll. (2013). A Comprehensive Model of a Novel Rotating Spool Compressor...*Int. J. of Ref.* 36, 1974-1981.

Uncertainty analysis

95% confidence interval (CI) based on average of data points

Average CI for each test used in propagated uncertainty

$$u_{L_{dis}} = \sqrt{\left(u_{P_{HS}} \Delta V_{dis}\right)^2 + \left(u_{P_{dis}} \Delta V_{dis}\right)^2}$$

5th Gen. Spool Prototype Indicator Diagram¹

14

Calculate Discharge Loss³

Calculated via numerical integration

³Bradshaw et al. (2018). An indicated loss analysis of a light-commercial spool...*In: Purdue Conference Proc.*. No. 1247.

Compression Loss Calculation³

Calculate Suction Loss³

Under SP pressure curve

Under PP pressure curve

External Losses - Tip and Side Seal Friction

Loss Pareto – 5th Gen. Spool Prototype¹

¹Bradshaw et al. (2016). Development of a Loss Pareto for a Rotating Spool Compressor...*App.Thm. Engr.* 99, 392-401.

Alternative Methodology – 7th Gen. Spool Compressor³

10 series of data collected, sequentially, at steady state operation

³Bradshaw et al. (2018). An indicated loss analysis of a light-commercial spool...*In: Purdue Conference Proc.*. No. 1247.

Methodology - Sensor Placement

39 Data points, 3 shaft speeds and sat. discharge temperatures (SDT), fixed superheat of 30°R, and various sat. suction temperatures (SST)

Speed	SST	Test #	SDT	Test #	SDT	Test #	SDT
rpm	°F	-	°F	-	°F	-	°F
900	25	1	100	9	110	17	120
	30	2	100	10	110	18	120
	35	3	100	11	110	19	120
	40	4	100	12	110	20	120
	45	5	100	13	110	21	120
	50	6	100	14	110	22	120
	55	7	100	15	110	23	120
	60	8	100	16	110	24	120
1300	25			25	110		
1620	25	26	100	28	110	33	120
	30	27	100	29	110	34	120
	35		100	30	110	35	120
	40		100	31	110	36	120
	45		100	32	110	37	120
	50					38	120
	55					39	120

Final Reduced Data – Test #12³

Cover and Valve Losses

Summary of Losses – Test #12

Cover Losses

Presented as a function of sat. suction temp (SST) and sat. discharge temp (SDT)

Magnitude consistent between speeds

Independent of sat. suction and discharge temperatures

Summary and Conclusion

- Experimental methodologies and select results were presented for two spool compressor prototypes
- Indicated loss analysis were shown to be effective at identifying more precise loss mechanisms within a compressor

Craig Bradshaw, Ph.D. craig.bradshaw@okstate.edu