

2018 Winter Conference \star Chicago, IL

Seminar 29: Fan Energy Savings and System Efficiency Increase by Using the Armin Hauer Fan Energy Index

ebm-papst Inc.

armin.hauer@us.ebmpapst.com

860-674-1515

Fan Selection Using FEI

Learning objectives

- 1. Identify shortcomings of existing measures of fan efficiency.
- 2. Understand how the Fan Energy Index is derived for each fan type and each configuration.
- 3. Describe the role of fan selection in determining energy consumed by a fan during its lifetime.
- 4. Describe how the relative electric power consumption difference of different fans for a given duty point becomes obvious through the FEI metric.
- 5. Define the fan selection process with FEI and fan labelling when the design flow and pressure is known at the point of sale.
- 6. Explain how fan distributors and OEM fan suppliers support power-saving fan selection through the FEI metric when the design point is unknown.

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

AMCA International

Appliance Standards Awareness Project

ISO Technical Committee 117 Fans

Northwest Energy Efficiency Alliance

U.S. Department of Energy's Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC)

Bibliography

ASHRAE. 2016 Standard 51 - Laboratory Methods of Testing Fans for Aerodynamic Performance Rating

ASHRAE. 2016 HVAC Systems and Equipment – Ch. 21.9 Fan Selection

AMCA International. 2011 Publication 201 – Ch. 6 Air Systems

AMCA International. 2017 Standard 207 - Fan System Efficiency and Fan System Input Power

AMCA International. 2018 Standard 208 - Calculation of the Fan Energy Index

Brendel. 2015 ASHRAE Journal 08-2015 – Selecting Fans for Minimum Energy Consumption

Outline

- Basic understanding of FEI
- Property owner's perspective
- Engineer's perspective
- Fan supplier's perspective Extras, if time permits

Basic understanding of FEI

Basic understanding of FEI Fan performance representations

Airflow (cfm)		0	1	2	3	4	5
	rpm	1010	1180	1331	1468		
7500	bhp	1.7	3.1	4.6	6.2		
	FEIs	1.67	1.54	1.46	1.4		
	rpm	1230	1378	1505	1626	1738	1843
10000	bhp	2.6	4.3	6.2	8.2	10.2	12.3
	FEIs	1.42	1.45	1.43	1.4	1.38	1.36
	rpm	1467	1590	1709	1814	1912	2009
12500	bhp	3.9	5.9	8.2	10.4	12.8	15.4
	FEIs	1.18	1.31	1.35	1.37	1.36	1.35
	rpm	1712	1819	1921	2021	2112	2196
15000	bhp	5.6	8.0	10.6	13.2	15.9	18.7
	FEIs	0.98	1.16	1.25	1.29	1.31	1.33
	rpm	1961	2058	2146	2233	2320	2402
17500	bhp	7.8	10.7	13.5	16.5	19.6	22.8
	FEI _S	0.81	1.01	1.13	1.2	1.24	1.27
20000	rpm	2214	2301	2382	2459	2535	2612
	bhp	10.7	13.9	17.2	20.5	23.9	27.3
	FEIs	0.67	0.89	1.02	1.11	1.17	1.21

Static Pressure (in. wg)

Fan performance table using AMCA 207 default motor efficiencies

Basic understanding of FEI Fan performance representations

Fan performance curves with lines of constant FEI using AMCA 207 default motor efficiencies

Example:

Good Better Best

Example:

Example:

Example:

Possibility 3: Rank by electric power

Problems:

• Which electric power thresholds are good / better / best?

Example:

Example:

Good	Better		Best				
Possibility 5: Rank by FEI	Fan Size	Speed (rpm)	Fan Total Effic. (%)	Shaft Power (bhp)	Elect. Power (kW)	FEI _T	
	18	3047	49%	15.3	12.8	0.83	
	20	2448	58%	13.0	10.9	0.98	
	22	1940	67%	11.2	9.42	1.13	
	24	1621	75%	10.1	8.49	1.25	
	27	1378	77%	9.81	8.27	1.28	
	30	1185	76%	9.89	8.33	1.27	
	33	1058	72%	10.5	8.82	1.20	

Example:

The duty point of a ventilation fan is firmly specified. The property owner requests proposals for three options:

Good	Better	Better Best					
Possibility 5: Rank by FEI	Fan Size	Speed (rpm)	Fan Total Effic. (%)	Shaft Power (bhp)	Elect. Power (kW)	FEI _T	
Fan electric power and	18	3047	49%	15.3	12.8	0.83	
reflected in a single	20	2448	58%	13.0	10.9	0.98	
number.	22	1940	67%	11.2	9.42	1.13	
	24	1621	75%	10.1	8.49	1.25	
	27	1378	77%	9.81	8.27	1.28	
	30	1185	76%	9.89	8.33	1.27	
	33	1058	72%	10.5	8.82	1.20	

If the fan duty point is fixed, then the FEI are inversely proportional to the consumed kW.

Specification template (Example):

Fans shall have a fan energy index (FEI) of 1.00 or higher at fan system design conditions, based on manufacturer's certified data.

Design practices and specification templates:

Universal and convenient with FEI

Equipment schedule:

• • •

. . .

- ...
- Minimum allowable
 Fan Energy Index **1.20**.

Minimum allowable Fan Energy Index **1.00**.

Manufacturer catalog information:

Airflow		<u>)</u>		-				
(cfm)		0	1	2	3	4	5	
	rpm	1010	1180	1331	1468			
7500	bhp	1.65	3.07	4.60	6.18			
	FEIs	1.67	1.54	1.46	1.40			
	rpm	1230	1378	1505	1626	1738	1843	
10000	bhp	2.56	4.32	6.18	8.19	10.23	12.29	
	FEIs	1.42	1.45	1.43	1.40	1.38	1.36	
	rpm	1467	1590	1709	1814	1912	2009	
12500	bhp	3.86	5.93	8.16	10.43	12.83	15.36	
	FEIs	1.18	1.31	1.35	1.37	1.36	1.35	
	rpm	1712	1819	1921	2021	2112	2196	
15000	bhp	5.56	8.02	10.55	13.22	15.93	18.70	
	FEIs	0.98	1.16	1.25	1.29	1.31	1.33	
	rpm	1961	2058	2146	2233	2320	2402	
17500	bhp	7.81	10.70	13.54	16.50	19.58	22.77	
	FEIs	0.81	1.01	1.13	1.20	1.24	1.27	
	rpm	2214	2301	2382	2459	2535	2612	
20000	bhp	10.69	13.92	17.22	20.48	23.86	27.34	
	FEIs	0.67	0.89	1.02	1.11	1.17	1.21	

FEI increase with system design pressure reduction.

Fan supplier's perspective Accounting for Appurtenance

Fan supplier's perspective Accounting for Appurtenance

Fan supplier's perspective Accounting for Appurtenance

Most existing fans have an operating area with a high FEI:

Fans therefore will not become obsolete, but...

Possibilities to increase FEI of an existing fan:

- 1. Reduce any belt losses.
- 2. Do not oversize the motor. (Part load losses)
- 3. Use a more efficient motor.

Possibilities to increase FEI of an existing fan model:

- 1. Reduce belt losses
- 2. Do not oversize the motor.
- 3. Use a more efficient motor
- 4. Sell a larger fan of the same model.

Possibilities to increase FEI of an existing fan model:

5. Sell a larger fan of the same model. (Illustration)

	Fan Size Speed (rpm)		Fan Total Effic. (%)	Shaft Power (bhp)	Elect. Power (kW)	FEI _T
Γ	18	3047	49%	15.3	12.8	0.83
	20	2448	58%	13.0	10.9	0.98
Ī	22	1940	67%	11.2	9.42	1.13
	24	1621	75%	10.1	8.49	1.25
	27	1378	77%	9.81	8.27	1.28

Possibilities to increase FEI of an existing fan model:

5. Sell a larger fan of the same model. (Illustration)

Incentive to design aerodynamically more efficient fans:

Requirement when FEI is on the fan nameplate

If the application duty point is known	If the application duty point is not known
Application duty point performance including	The FEI at the highest performance curve including
impeller rotational speed,FEI	impeller rotational speed,FEI
 airflow, fan pressure gas density (if other than standard air) 	

Draft option when FEI is on the fan nameplate

Questions, or Extras

Armin Hauer

armin.hauer@us.ebmpapst.com

Extras

- 5. AMCA 208 Annex C
- 6. Fan selection for multiple duty points (load profile)
- 7. FEI comparison when competing fans do not meet the desired duty point.

Annex C of AMCA 208

Background:

Annex C of AMCA 208

Background:

ηSTD

The FEI metric relaxes the fan efficiency requirements for low fan pressure, low airflow.

Potential problem (example):

Annex C of AMCA 208 Fan Array

Background:

The FEI metric relaxes the fan efficiency requirements for low fan pressure, low airflow.

Potential problem (example):

An assembly of 4 or 9 fans could use more power than a 1-fan solution.

Solution for fan arrays:

Divide the reference power value by the number of fans. $FEI(1) = FEP(reference) \div FEP(actual)$ $FEI(4) = (1/4) \times FEP(reference) \div FEP(actual)$ $FEI(n) = (1/n) \times FEP(reference) \div FEP(actual)$

Specification template: The FEI for fans used in fan arrays shall be calculated in accordance with AMCA 208 Annex C.

Fan selection for multiple duty points (load profile)

Air performance

Fan selection for multiple duty points (load profile)

duty	cfm	in. wg	rpm	hours	Wire-to-air efficiency %	kW	kWh	FEI
1	6727	4.78	2244	1000	67	5.67	5667	1.43
2	5000	3	1743	4000	66	2.67	10677	1.54
3	3000	2.5	1421	3000	60	1.46	4379	1.54
p.a.				8000			20723	

FEI comparison when competing fans do not meet the desired duty point exactly

Side-by-side comparisons require identical duty points, no matter which fan efficiency metric is used.

Questions

Armin Hauer

armin.hauer@us.ebmpapst.com