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Learning Objectives

• Understand the differences of data-driven models for positive displacement 
compressors.

• Explain how the minimum training dataset affects the accuracy of the models.

• Describe how uncertainties can be modeled and predicted.

• Show legacy model performance in extrapolation and modulation scenarios

• How to convert a compressor map from a baseline refrigerant to a new refrigerant 
with lower GWP.

• Understand technical challenges associated with implementing nonlinear model 
order reduction approaches to Vapor Compression Cycle (VCC) applications.
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Introduction

• Performance mapping of positive displacement compressors is essential to simulate

systems and their operations (e.g., control strategies)

• Empirical (e.g., AHRI 540) and semi-empirical models have been proposed

• Data-driven modeling approaches are of interest because of their capabilities of

handling complex non-linear systems:

• Pro: no modeling assumptions; computationally efficient

• Cons:

• Usually, relatively large data-set required for training

• Limited extrapolability

• Unclear stability of the model when coupled with a system model

• The behavior of data-driven modeling approaches with limited data sets is still not
completely investigated especially for this application



Introduction (cont’d)

• In recent years, data-driven modeling applied to refrigeration, air conditioning and heat pump

systems (systems, components, thermophysical properties, etc.) has gained attention

• Examples of different data-driven models (non-exhaustive list):

• Artificial Neural Networks (ANN)

• Support Vector Machines (SVMs)

• Classification and Regression Tree (CART)

• Multiple Regression (MR)

• Generalized Linear Regression (GLR)

• Chi-squared Automatic Interaction Detector (CHAID)

• Adaptive Neuro-Fuzzy Inference System (ANFIS)

• A few studies can be found on machine learning applied to positive displacement machines

(Ledesma et al. 2015, Zendehboudi et al. 2017, Ma et al. 2020)



Introduction (cont’d)

Artificial Intelligence

Any techniques that enables 
computers to mimic human 
intelligence, using logic, if-

then rules, decision trees, and 
machine learning (including 

deep learning)

Machine Learning Deep Learning

A subset of AI that 
includes abstruse 

statistical techniques 
that enable machines to 

improve at tasks with 
experience. The 

category includes deep 
learning

The subset of machine learning 
composed of algorithms that 
permit software to train itself 
to perform tasks, like speech 

and image recognition, by 
exposing  multilayered neural 
networks to vast amount of 

data

… breakthroughs

1950’s 1980’s 2010’s Source: Goodfellow 2016



Objectives

Objectives:

• Generalized compressor mapping for conventional and novel compressors

• Need for accurate performance mapping while minimizing the number of test points

• Extrapolation capabilities

• Uncertainty of the predictions

Methodology:

• Identify a compressor envelope and select minimum data points to capture the compressor

operating envelope.

• Utilize a subset of data to train ANN model, and run the trained ANN model to predict the

performance of the compressor.

• Increase the number of training points and complexity of the model in steps to quantify the

improvements on the performance predictions.

• Utilize Gaussian Process regression to predict uncertainties



Objectives (cont’d)

Methodology:

✓ Identify a compressor envelope and select minimum data points to capture the compressor operating envelope.

✓ Increase the number of training points and complexity of the model in steps to quantify the improvements

on the performance predictions and quantify the uncertainties

𝑃 𝑓 ∙ | 𝒟 = 𝑃 𝒟 𝑓 ∙ × 𝑃(𝑓 ∙ )

• Identify the point that contributes to 

the largest uncertainties

• Added into the training points dataset



Model Structures

2. ANN models
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1. AHRI 10-coefficient mapping

Source: Goodfellow 2016
Example of a compressor (single hidden layer)



Model Structures (cont’d)

3. Gaussian Process (GP) regression

• Gaussian Process regression is “Bayesian regression on steroids” and 

allows uncertainty quantifications

• The target function 𝑓 ∙ is approximated has a mean function 𝑚(∙) and a 

covariance function 𝑘 ∙ ,∙ . The mean function 𝑚(∙) is the expected value 

of the target function 𝑓 ∙

• The covariance function (or covariance kernel) 𝑘 ∙ ,∙ defines a 

nearness or similarity measure on the input space

• X ~ N 𝜇, 𝜎2 → 𝑓 ∙ ~ (𝑚 ∙ , 𝑘 ∙ ,∙ )

• The target function 𝑓 ∙ is assigned for a probability measure 𝑃(𝑓 ∙ )

called prior probability measure. With training data, a probability measure 

𝑃 𝒟 𝑓 ∙ called posterior probability measure can be observed;

• By applying Bayes' rule, a probability measure of the ground truth 

function can be obtained:

𝑃 𝑓 ∙ | 𝒟 = 𝑃 𝒟 𝑓 ∙ × 𝑃(𝑓 ∙ )

• The 95% confidence interval of the result probability measure of 𝑓 ∙ is 

used to represent the uncertainty of the model.
Source: Cheung et al. 2018

Scroll compressor with R410A

1 lbs/hr = 0.4536 kg/hr



Case Study: ANN Model Structure

• Hermetic dual-cylinder rolling-piston compressor with R410A as the working fluid. 

• A total of 43 steady-points were collected by colorimeter testing to train and validate the models. 

°F = (°C x 1.8) + 32



Case Study: ANN Model Structure (cont’d)

• Comparison AHRI 10-coeff. mapping vs. ANN 

1 kW = 0.948 Btu/s1 lbs/hr = 0.4536 kg/hr



Case Study: ANN Model Structure (cont’d)

Mass Flow Rate

°F = (°C x 1.8) + 32

Compressor Power



Case Study: Uncertainty and Extrapolation Studies

• Hermetic dual-cylinder rolling-piston compressor with R410A as the working fluid. 

• A total of 43 steady-points were collected by colorimeter testing to train and validate the 

models. 

°F = (°C x 1.8) + 32



Uncertainty Analysis
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𝑇𝑒 and 𝑇𝑐 are dew−point temperatures which are calculated by the measured suction and discharge pressure.

The uncertainty of pressure measurement (∆𝑃𝑠𝑢𝑐,𝑚𝑒𝑎, ∆𝑃𝑑𝑖𝑠,𝑚𝑒𝑎) and uncertainty due to equation of state

(EOS) is calculated:

1. AHRI 10-coefficient mapping (Reference: Cheung et al. 2018)



Uncertainty Analysis (cont’d)

2. ANN Model
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Uncertainty Analysis (cont’d)

Mass Flow Rate Compressor Power

Relative Error
Highest ANN model (5 samples)

Lowest ANN model (10 samples)

Uncertainty
Highest ANN model (5 samples)

Lowest 10-coefficient polynomial

Relative Error
Highest ANN model (5 samples)

Lowest ANN model (10 samples)

Uncertainty
Highest ANN model (5 samples)

Lowest ANN model (10 samples)



Extrapolation Analysis

• The new training data is selected within the compressor envelope.

• The data points outside the training data set are validation data points for extrapolation

capabilities analysis.
Training samples on compressor 

envelope
Training samples within compressor 

envelope

°F = (°C x 1.8) + 32



Extrapolation Analysis (cont’d)

Training samples on compressor envelope Training samples within compressor envelope

Training samples on compressor envelope Training samples within compressor envelope

𝑹𝟐 𝑴𝑨𝑷𝑬 𝑹𝟐 𝑴𝑨𝑷𝑬
ANN model

(5 training samples)
99.41% 1.42% 97.05% 2.43%

ANN model

(10 training samples)
99.92% 0.35% 99.26% 1.19%

10-Coefficient polynomial 99.96% 0.251% 99.61% 0.64%

1 kW = 0.948 Btu/s



Extrapolation Analysis (cont’d)

▪ To clearly locate the position of data samples representing larger model relative error or higher uncertainty of 

mass flow rate:

°F = (°C x 1.8) + 32



Extrapolation Analysis (cont’d)

▪ To clearly locate the position of data samples representing larger model relative error or higher uncertainty of 

compressor power:

°F = (°C x 1.8) + 32



Conclusion

▪ What is the role of data-driven models for compressor mapping?

▪ Data-driven models offer the opportunity of predicting performance based on data independently

from the compressor technology

▪ Several challenges can be identified:

▪ Selection of data set, ML model

▪ Degree of randomness during the training

▪ Extrapolation beyond training space

Reciprocating compressor 
dataset: a statistical 
comparison between Keras & 
PyTorch (based on 100 time 
iterations of each model)



Conclusion (cont’d)

▪ What is the role of data-driven models for compressor

mapping?

▪ Physics-Informed Machine Learning (PIML):

▪ Offers pathway to train a neural network in a supervised

way on limited experimental datasets while respecting

laws of thermodynamics/physics

▪ Enable “smart” compressors:

▪ Actively learn in-system performance from mapped

performance

▪ Load-based testing compressor mapping

▪ FDD implementation and performance degradation

▪ Combination of semi-empirical models and ML models

Semi-empirical 
model schematic
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