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Learning Objectives

Understand the differences of data-driven models for positive displacement
compressors.

e Explain how the minimum training dataset affects the accuracy of the models.

Describe how uncertainties can be modeled and predicted.
* Show legacy model performance in extrapolation and modulation scenarios

* How to convert a compressor map from a baseline refrigerant to a new refrigerant
with lower GWP.

Understand technical challenges associated with implementing nonlinear model
order reduction approaches to Vapor Compression Cycle (VCC) applications.

Systems. Credit earned on completion of this program will be reported to ASHKAE Kecords jor
AIA members. Certificates of Completion for non-AlIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such,
it does not include content that may be deemed or construed to be an approval or endorsement
by the AIA of any material of construction or any method or manner of handling, using,
distributing, or dealing in any material or product. Questions related to specific materials,
methods, and services will be addressed at the conclusion of this presentation.
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Introduction

- Performance mapping of positive displacement compressors is essential to simulate
systems and their operations (e.g., control strategies)

- Empirical (e.g., AHRI 540) and semi-empirical models have been proposed

- Data-driven modeling approaches are of interest because of their capabilities of
handling complex non-linear systems:

- Pro: no modeling assumptions; computationally efficient

. Cons:

- Usually, relatively large data-set required for training
- Limited extrapolability
- Unclear stability of the model when coupled with a system model

 The behavior of data-driven modeling approaches with limited data sets is still not
completely investigated especially for this application



Introduction (cont’d)

- In recent years, data-driven modeling applied to refrigeration, air conditioning and heat pump
systems (systems, components, thermophysical properties, etc.) has gained attention

- Examples of different data-driven models (non-exhaustive list):
« Atrtificial Neural Networks (ANN)

Support Vector Machines (SVMSs)

Classification and Regression Tree (CART)

Multiple Regression (MR)

Generalized Linear Regression (GLR)
Chi-squared Automatic Interaction Detector (CHAID)
« Adaptive Neuro-Fuzzy Inference System (ANFIS)

- A few studies can be found on machine learning applied to positive displacement machines
(Ledesma et al. 2015, Zendehboudi et al. 2017, Ma et al. 2020)



Introduction (cont’d)

Artificial Intelligence Machine Learning

A subset of Al that The subset of machine learning

intelligence, using logic, if- statistical technl.ques permit software to train itself
then rules, decision trees, and that enable machme's o 0 (S ek, e 5 el
machine learning (including MO .at tasks with and .image re.cognition, by
deep learning) experience. The exposing multilayered neural
category includes deep networks to vast amount of

learning data

I l | ... breakthroughs

Source: Goodfellow 2016



Objectives

Objectives:

« Generalized compressor mapping for conventional and novel compressors

* Need for accurate performance mapping while minimizing the number of test points
« Extrapolation capabilities

« Uncertainty of the predictions

Methodology:

« |dentify a compressor envelope and select minimum data points to capture the compressor
operating envelope.

« Utilize a subset of data to train ANN model, and run the trained ANN model to predict the
performance of the compressor.

 Increase the number of training points and complexity of the model in steps to quantify the
Improvements on the performance predictions.

« Utilize Gaussian Process regression to predict uncertainties



Objectives (cont’d)

Methodology:
v ldentify a compressor envelope and select minimum data points to capture the compressor operating envelope.

v Increase the number of training points and complexity of the model in steps to quantify the improvements
on the performance predictions and quantify the uncertainties
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Model Structures

1. AHRI 10-coefficient mapping

Mmap =My + My - To + Mz - To+ My - T+ Ms - (T, - T,) + Mg - TZ + My -T2 + Mg - (TZ - T,) + Mg+ (T, - TZ) + My - T2

Wmap=P1+P2-Te+1>3-TC+P4-TSZ+P5-(TS-Td)+P6-T,§+P7-TS3+P8.(T52-Td)+P9-(TS-T§)+P10-T§

2. ANN models

Nneural Ninput
2 1 1 2
Jj=1 i=1
_________ Bias

Activation
function

o) /> X

Output

Summing
junction

_________

Input  Synaptic Source: Goodfellow 2016
signals  weights

Input layer

Hidden layer
Example of a compressor (single hidden layer)



Model Structures (cont’d)

3. Gaussian Process (GP) regression

Gaussian Process regression is “Bayesian regression on steroids” and
allows uncertainty quantifications

The target function f () is approximated has a mean function m(:) and a
covariance function k( -,-). The mean function m(:) is the expected value
of the target function f(-)

The covariance function (or covariance kernel) k(-,-) defines a
nearness or similarity measure on the input space

X ~ N(H, 0'2) - f(') ~ (m('),k(’,’ ))
The target function f(-) is assigned for a probability measure P(f())

called prior probability measure. With training data, a probability measure
P(D | f(-)) called posterior probability measure can be observed,;

By applying Bayes' rule, a probability measure of the ground truth
function can be obtained:

PCfC)ID)=P@DIf()*xPF())
The 95% confidence interval of the result probability measure of f(-) is
used to represent the uncertainty of the model.
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Case Study: ANN Model Structure

« Hermetic dual-cylinder rolling-piston compressor with R410A as the working fluid.
« A total of 43 steady-points were collected by colorimeter testing to train and validate the models.
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Case Study: ANN Model Structure (cont’d)

Reletive Error [%]

« Comparison AHRI 10-coeff. mapping vs. ANN

= ANN model (10 samples)‘
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Case Study: ANN Model Structure (cont’d)

Mass Flow Rate

ANN model(10 samples)
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Case Study: Uncertainty and Extrapolation Studies

» Hermetic dual-cylinder rolling-piston compressor with R410A as the working fluid.
» A total of 43 steady-points were collected by colorimeter testing to train and validate the

models.
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Uncertainty Analysis

1. AHRI 10-coefficient mapping (Reference: Cheung et al. 2018)

o\ o\
Am,. = ) . ATZ ) . AT?
My (an) e+<aTC> c
2 -~ 2

= al/’i\/comp aVVcom
AWopmp = CAT? + | —=F | - AT?
comp \J ( 6Te e aTC c

T, and T, are dew-point temperatures which are calculated by the measured suction and discharge pressure.

The uncertainty of pressure measurement (AP, cmea, APgismeq) and uncertainty due to equation of state
(EOS) is calculated:

2 2
oT, (P 0T (Paism
AT, = j( o g"g'me“)> - (APZcmea + APZys); AT, = j( el glf’ e“))  (APdismea + BPios)




Uncertainty Analysis (cont’d)

— R 2
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The partial derivative of an output with respect to an input is calculated based on the neural
network mathematical expression:

<a Y(k))z _ Nneural <w(2) . w(l) . dp > . Ymax(k) — Ymin(k)
d X(i) J It (px(i) Xmax(i) - Xmin(i)

2

j=1



Uncertainty Analysis (cont’d)

Mass Flow Rate Compressor Power
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Extrapolation Analysis

« The new training data is selected within the compressor envelope.
« The data points outside the training data set are validation data points for extrapolation
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Extrapolation Analysis (cont’d)

Training samples on compressor envelope Training samples within compressor envelope
R? MAPE R? MAPE
ANN model 99.41% 1.42% 97.05% 2.43%
(5 training samples)
ANN model 99.92% 0.35% 99.26% 1.19%
(10 training samples)
10-Coefficient polynomial 99.96% 0.251% 99.61% 0.64%
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Extrapolation Analysis (cont’d)

» To clearly locate the position of data samples representing larger model relative error or higher uncertainty of

mass flow rate;:
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Extrapolation Analysis (cont’d)

» To clearly locate the position of data samples representing larger model relative error or higher uncertainty of

compressor power:
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Conclusion

= What is the role of data-driven models for compressor mapping?

= Data-driven models offer the opportunity of predicting performance based on data independently
from the compressor technology

= Several challenges can be identified:

= Selection of data set, ML model

= Degree of randomness during the training

Comparison of PyTorch vs.Keras in t Distributions

04

= Extrapolation beyond training space
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Conclusion (cont’d)

= What is the role of data-driven models for compressor s
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* Physics-Informed Machine Learning (PIML):

= Offers pathway to train a neural network in a supervised
way on limited experimental datasets while respecting

laws of thermodynamics/physics - Semi-empirical
@ model schematic
= Enable “smart” compressors: | isioanoaan

= Actively learn in-system performance from mapped
performance
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= FDD implementation and performance degradation

_________________________________________________

= Combination of semi-empirical models and ML models @o




Bibliography

Cheung H., Wang S., “A comparison of the effect of empirical and physical modeling approaches to extrapolation
capability of compressor models by uncertainty analysis: A case study with common semi-empirical compressor mass
flow rate models”. International Journal of Refrigeration, 86(2018), 331-343.

Haykin S., “Neural Networks and Leaning Machines”, Third Edition, Pearson, 2009.
Goodfellow, I., Bengio Y., Courville, A., “Deep learning (Adaptive computation and machine learning series)”, MIT, 2016
Gulli A., Pal S. “Deep learning with Keras: implement neural networks with Keras on Teano and TensorFlow”, Packt, 2017

Ledesma S., Belman-Flores J.M., Barroso-Maldonato J.M., “Analysis and modeling of a variable speed reciprocating
compressor using ANN”, International Journal of Refrigeration, 59(2015), 190-197.

Lumpkin, D. R., Bahman, A. M., Groll, E. A., 2018. Two-phase injected and vapor-injected compression: Experimental
results and mapping correlation for R-407C scroll compressor. International Journal of Refrigeration, 86, 449-462.

Ma J., Ding X., Horton W.T,, Ziviani D., “Development of an automated performance mapping using artificial neural
network and multiple compressor technologies” International Journal of Refrigeration, 120(2020), 66-80.

Zendehboudi A., Li X., Wang B., “Utilization of ANN and ANFIS models to predict variable speed scroll compressor with
vapor injection”, International Journal of Refrigeration, 74(2017), 475-487



Questions?

Davide Ziviani

dziviani@purdue.edu



