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Learning Objectives

* Objective 1: Explain high level operating principles of fiberoptic temperature measurement
techniques

* Objective 2: Understand current used and new techniques to determine average and local
air-side heat transfer coefficients

* Objective 3: Obtain an understanding of the different measurement methods that can be
used for refrigerant and oil charge measurements

* Objective 4: Explain the relationship between the measured capacity and the void fraction

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education
Systems. Credit earned on completion of this program will be reported to ASHRAE Records for
AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such,
it does not include content that may be deemed or construed to be an approval or endorsement
by the AIA of any material of construction or any method or manner of handling, using,
distributing, or dealing in any material or product. Questions related to specific materials,
methods, and services will be addressed at the conclusion of this presentation.
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Introduction

 The void fraction is an important parameter in many two-phase flow pressure drop and
heat transfer correlations

 The void fraction is strongly related to the two-phase flow behavior, which strongly
affects both total heat transfer rate and pressure drop

* Alarge variety of void fraction measurement techniques exist and each technique has
some typical advantages and disadvantages:

Wire mesh tomography (Fuangworawong et al., 2007)
* Hot wire anemometry (Louahlia-Gualous et al., 2003)
e  Optical techniques (Brutin et al., 2013)

*  Permittivity-based (Gijsenbergh and Pures, 2013)

* Capacitive void fraction methods (e.g., Strazza et al., 2011) are low cost and easy to
implement. However, a drawback is that the relation between the void fraction and the
measured capacitance has to be determined for each design and application

* In order to make the measurement technique more widely applicable, the calibration
has to be independent of variables other than those measured with the sensor itself.

 De Kerpel et al., 2013 proposed to correlate void fraction and flow regime based on the
capacitance signal alone



Capacitance Sensor Construction

 The sensor consists of two main parts: the sensor probe and the sensor transducer
(Carnier, 2009)

 The probe contains the sensing and guard electrodes and is built into the test section

 The sensor transducer comprises the electronics necessary to measure the capacitance
between the sensing electrodes of the probe.

* The concave electrodes are placed around the tube wall with § = 160°

* To attain a high sensitivity to the capacitance changes of the two-phase flow, the
thickness of the tube wall should be small

Casing

» Aflexible circuit material is used to maintain a thin
tube wall. The material is a laminate of a thin layer of
dielectric material and a layer of copper cladding,
The electrodes are etched from the copper claddings
and the dielectric layer acts as the tube wall with a
thickness of 50 um

e Axial length of the electrodes is 8 mm (0.315 in)

Tube wall

Cross-section of the sensor
as designed by Carnier, 2009.



Capacitance Sensor Construction (cont’d)

 The sensor probe contains three electrode pairs:
* The middle electrodes are the sensing electrodes, between which the capacitance is measured
* Thetwo outer electrodes act as guard electrodes to reduce the fringing of the electric flied lines

* 3D printed plastic parts are used to give structural integrity to the tube wall and
electrodes and a smooth transition is ensured

 The assembly is placed in an aluminum casing which will act as a shield for the
electromagnetic interference

 The gaps between the plastic parts and the casing are filled with a two- component epoxy
potting compound Casing
* The sensor transducer is connected to the sensor

probe to measure the capacitance between the
sensing electrodes of the probe

3D printed

e The transducer circuit is based on the design of a stray- peste
immune capacitance meter (Yang and Yang, 2002).
Without stray-immunity is difficult to measure small Electrode
capacitances of e.g., < 10pF

Tube wall

e Output of the transducer is 0 to 10 V with a sensitivity Cross-section of the sensor
of 1.16 V/pF and output accuracy of 4 mV (at 1kHz) as designed by Carnier, 2009.



Sensor Calibration

 Due to the difference between dielectric constant of the gas and liquid phase, the
measured capacitance between the electrodes depends on the void fraction (C-¢ )

 Due to the curvature of the electrodes, the electric field is not homogeneous

« The measured capacitance is dependent on the void fraction as well as the spatial
distribution of the phases (the capacitance does not linearly vary with the void fraction)

Example: void fraction measured with uncalibrated
sensor (linear C-¢ relation assumed) for R410A, T = 15°C
(59 °F) and D = 8 mm (0.315 in) for G = 200 kg/m?
(40.96 1b/ft%s) (De Kerpel et al., 2013)

Steiner version of Rouhani-Axelsson drift flux void
fraction model was chosen as high accuracy model:
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Homogeneous void fraction model is also shown as an
indication of the upper limit of the actual void fraction
* Calibration of the void fraction sensor is necessary



Sensor Calibration (cont’d)

e C-e£ curves depends on the flow regime

* Simplified flow structures are assumed for each flow regime based on geometric models
proposed by Thome and coworkers (De Kerpel et al., 2013)

 FEM simulations are used to determine the C-¢ relation for each of these liquid-vapor
interface structures (flow regimes). FEM is utilized due to relatively complex liquid-vapor
interfaces and avoids the use of inserts to mimic the vapor and liquid phase in the sensor

— Calibration curves
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Sensor Calibration (cont’d)

*  Two-flow maps:
1. Wojtan-Ursenbacher-Thome (Woijtan et al., 2005) flow map
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Sensor Calibration (cont’d)

* C(Calibration results for R134a, the N = !
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Sensor Calibration (cont’d)

Normalized sensor signal for different G and x for R410A: (a) slug flow and
intermittent flow at low x; (b) intermittent flow at high x and annular flow

0.35[
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Statistical parameters Flow regime map Linear C—e relation
Thome fMowmap Barbieri lowmap
AVG (%) STD (%) AVG (%) STD (%) AVG (%) STD (%) AVG (%) STD (%)
R4104, slug flow 6.6747 105223 1.7492 10,68 1.7492 10.68 18.43 17.81
R4104, intermittent low 0.6271 29341 2.0793 3.5878 2.0824 4.3032 733 277
R4104, annular flow 0.8289 1.2802 02731 1.6120 0.5477 14775 256 245
R410A, total 1.2749 4.0689 1.0652 4.6661 1.1539 4.7400 26 9.07
R134a, slug flow 0.0695 11,6995 3.6619 93178 3.6619 93178 5.03 12.86
R134a, intermittent flow 0.6328 1.6172 0.4864 1.8933 0.297 1.2539 8.17 1.63
R134a, annular flow 1.3751 1.6030 1.218 1.5783 1.3919 1.4756 2.02 1.66

R134a, total 0.5017 36574 0.1529 4.4432 0.117 4.397 4.04 5.44




Applications: Return Bend Two-Phase Pressure Drops

e Compact heat exchangers for domestic use

* Objectively assess the intensity and extent of the disturbance of the two-phase flow
behavior and pressure drop due to a return bend

* Link flow behavior to the pressure drop

0D (mm) ID (mm) R (mm) 2R/ID (-)
Geometry 1 9.53 8.1 10.2 2.55
Geometry 2 9.53 8.1 12.7 3.13
Geometry 3 9.53 8.1 16 3.95
Geometry 4 6.35 4.93 10.9 4.43

1 mm = 0.0394 in




Applications: Return Bend Pressure Drops (cont’d)
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Applications: Return Bend Pressure Drops (cont’d)
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Applications: Return Bend Pressure Drops (cont’d)
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Applications: In-situ Oil Retention Measurements (cont’d)

e 1721-RP: Oil Return and Retention in Unitary Split System Gas Lines with HFC and HFO
Refrigerants

PSH— Pressostar
Senser (P: Pressure,
(B)— T Tamperatmre, M. Mass flow)

Climate
Refiigerant

ocesse

Vertical Test Section




Applications: In-situ Oil Retention Measurements (cont’d)

e 1721-RP: Oil Return and Retention in Unitary Split System Gas Lines with HFC and HFO

Refrigerants
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Conclusion

* Electrical capacitance of the flow is an effective way of assess the flow behavior
* The capacitance of a fluid is a direct function of the amount of each phase
* Asensor has been developed to measure the void fraction based on the capacitance of the flow

* A calibration technique based on signal features has been proposed and validated. This was achieved by
using three statistical parameters of the capacitance signal to determine the flow regime and as
weighting coefficients to determine the void fraction for intermittent flows:

* mean capacitance
* the variance of the capacitance signal
* the frequency for which 95% of the frequency spectrum of capacitance signal is lower

* The applicability of this methodology can be extended to different flow regimes and refrigerant-oil
mixtures

* The capacitance sensor have been employed to investigate the effect of bend geometry on the two-
phase frictional pressure drop and flow behavior in the vicinity of the bend

* The ongoing research is developing a void fraction sensor for measuring instantaneous and average oil-
circulation ratios in horizontal and vertical lines
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